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L OBJECTIVE

The goal of this project is to build an on-line bit-error-rate (BER) measurement system based on a
neural network. The system is initially trained for the expected range of channel disturbances and
operates on-line (without interrupting data transmission). The interfacing part on the receiver side
provides enough information for the neural network (NN) to recognize disturbances and estimate the

BER.
II. ACCOMLISHMENTS
During the research, the following steps are performed:

1. Theoretical Analysis

Published as a conference paper: Elias Kosmatopoulos, Djuro Zrilic, “A Neural Network
Model for Estimating Bit-Error-Rate in Digital Communication Systems”, International
Conference on Telecommunications ICT'98, Vol. III, Porto Carras, Greece, 21-25 June 1998,
pp-296-300. ' '

A modified version of this paper has been submitted for possible publication in IEEE Trans. on

Vehicular Technology.
M. Narandzic, D. G. Zrilic: "Perceptron as a BER estimator", paper in preparation.

2. Simulation

Performances of the neural BER estimator are simulated in the presence of additive white
gaussian noise (AWGN) and both fading and co-channel interference, all simultaneously. The
results are shown in Figure 1 for different and randomly chosen disturbance combinations.
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Figure 1 NN BER Estimation (MC—Monte Carlo Method, NN-Neural Network Method, SIR-Signal-to-Interference Ration).

3. Implementation

A block diagram of the overall system configuration under consideration is shown in Figure 1.
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Figure 2 Experimental setup.

To verify the correctness of a signal-statistics estimator (SSE) approach, an ideal NN of the
perceptron type (2-7-1) is simulated on the computer first. To interface SSE circuit, an 8-bit.
converter is used. The input signal range for this converter was from 0 to 2.55V.

For different combinations of chanr 2l disturbances, statistical moments at the output of the SSE
block are measured, while a known sequence is transmitted. At the same time, BER is measured
on HP3782B Error Detector. Thnese results are used to train a neural network programmed on
the computer. A MATLAB environment is employed to train the NN using a back propagation
algorithm. Interfacing is controlled by cmex (MATLAB executablé written in C).

3.1 Implementation with NN emulated on personal computer (PC)

First, we have built a transmission system board TSB1 to evaluate binary base-band (BB)
system performance in the presence of additive white Gaussian noise (Figure 3). Figure 4
shows the BER curve as a function of the noice variance. A circle represents a value of
training pair, and a full line presents values that the NN learned. The network is trained
using a back-propagation algorithm with an adaptive learning rate and momentum, until the
sum-squared-error is less than 107,
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Figure 4 BER as a function of estimated AWGN variance M2.

Unit TSB2 (Figure 2) emulates AWGN, fading and co-channel interference. These
disturbances are introduced into the communicatio~ channel by the following generators:
HP3787B Digital Data Test, HP89410A Vector Sigual Analyzer and HP33120A Arbitrary
Waveform Generator. Figure 5 shows the waveforms corrupted by the following channel

disturbances: (a) CCI, (b) Rayleigh fading and (c) AWGN.
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Figure 5 Radio channel emulation.




A necessary training set for the NN was provided through the real measurement that was
performed on the binary BB transmission system. To do so, we have performed the
following necessary steps: ‘

e The receiver communicates with the NN (stored in a PC) through a ADC, which
accepts signal levels from 0 to 2.55V. Thus, the output range of SSE units have to
be adjusted.

e Different combinations of disturbances are generated according to Figure 2.
Statistical moments are measured at SSE unit outputs. For every recorded value of
the moments, the BER is measured and recorded on the H3782B Error Detector.
The pairs, consisting of statistical moments and the value of the BER, are
representative examples for the neural network training set.

e Ideal NN is trained using the back propagation method. A block diagram of the NN
is shown in Figure 6, and the result of a simulation (with real channel disturbances)
is shown in Figure 7.
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Figure 6 Perceptron 2-7-1.

The perceptron from Figure 6 is trained to estimate BER in the presence of AWGN and
CCI, with their statistical variances as inputs. The training set contains examples for
different combinations SIR={2, 3, 4, 5} dB and noise power Pn={0, 1, 2, 3,4, 5,6, 7, 8,9,
10} dBm. After training is completed the sum-squared error settle to a value of 0.0251.




3.2

Figure 7 Mapping learned by ideal 2-7-1 perceptron simulated on compluter.

After NN training, the perceptron mapping is validated with new examples. In this case, it
is a validation of the overall system, including Monte Carlo BER measurements, used
resolution of disturbances for the training set, and the generalizing properties of the neural
network.

Implementation when NN is realized in discrete form

While waiting for VLSI chip fabrication, a discrete model of the NN from Figure 6 was
implemented. This unit was named DNN+MLT (discrete neural network with multipliers).
Active components used for this purpose are four quadrant multipliers AD633J, operational
transconductance amplifiers (OTA) CA3280E, and operational amplifiers LM741C.
Realization of the hidden neuron with two inputs is shown in Figure 9.
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Figure 8 Hidden neuron with two input synapses (wll and wi12), bias (bl) and adjustable slope
and saturation level.

The output neuron has a similar look; the only difference being that the hidden neuron has 2
inputs and 1 output, while the output neuron has 7 inputs and 1 output (Figure 6). The
discrete model consists of two interconnected boards, DNN and MLT, while the supply is
provided from the TSB2 board. The NN parameters, weights and biases, are generated
extern~ily by an array of potentiometers. '

Discrete realization deals with analog neural network hardware which does not support
training. Instead, hardware characteristics (such as multiplier constants, adder amplification
and OTA transfer characteristics) are measured and included into the error back-
propagation procedure simulated on the computer. Obtained weights and biases are then
applied to the hardware model as external voltages. Because the transfer characteristic of
the neuron in Figure 6 has a form of the hyperbolic tangent, we would like to approximate
the OTA transfer function with
yx)=—"r-b.
c+e

For each OTA, the transfer characteristic is measured and described by parameters a, b, c,
and s. Figure 9 top curves represents transfer functions of the hidden layer neurons, and the
bottom curve in Figure 9 presents the transfer function of the output neuron.
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Figure 9 Simulated OTA transfer characteristics of hidden and output network layer.

For the optimized discrete model, back-propagation training can reach the sum-squared
error equal to 0.0343. Figure 10 shows non-linear mapping which is learned by. the
simulated discrete neural network model. This result tells us that the discrete model is
expected to show a performance that is very close to a real network simulated on the
computer. '

Figure 10 Mapping of simulated perceptron discrete model with increased sensitivity.




The values of weights and weights implemented in the discrete mode! are shown below.

w=[ 16870 0.7643
0.6183 -2.2609
-0.0302 -1.8507
1.7209 -0.6855
1.8748  0.3662
1.3857 2.4768
1.5853 -0.9715 1,

= 0.3666 0.6690 0.1077 0.2510 0.5175 -0.8766 0.6525 |,

b= [ 12538
0.4194
-0.4793
0.7512
0.3079
-0.4675
0.7192 ],

B= -0.0531.

These values are simulated and optimized on computer using a back-propagation algorithm:
w - the input weights of the hidden layer,
W - the weights of the output neuron,
b - the hidden neuron biases, and
B - the bias of the output neuron.

After adjusting these values on the discrete model, r~.l performance of the BER estimator
is monitored. The output of the NN is fed into an 8-bit ADC and then into the PC. Figure
11 shows the case when AWGN and co-channel interference are present as disturbances.
Figure 11 (a) top shows values of the variances at the output of SSE units. It is possible to
see three distinct regions; level of noise is first 0dBm, then increased to SdBm and finally
10dBm. Figure 11 (a) bottom shows the value of the BER. We see from the median curve
that the value of the BER is nearly 10”. After the increase of the noise variance, the BER
value increased as well. A similar situation is shown in Figure 11 (b) as well; the only
difference is that instead of a median operation a mean operation is performed on the row
BER data.
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Figure 11 Results of the BER measurements on the discrete experimental model.
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3.3 VLSI neural network chip

We have fabricated the NN proposed in Figure 7. The layout and pin labels of the '
manufactured NN chip are shown in Figures 12 and 13 respectively.
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Figure 12 Layout of the neural network chip.
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Figure 13 Pins of manufactured neural network chip.

Chip N96F-BL contains a fully connected two-layer perceptron with 2 inputs, 7 hidden
neurons and one output (2-7-1). The main limitation of the size of the network that can
fit into the chip comes from externally-supplied parameters. Commercially available
custom chips support up to 40 pins. Due to lack of addressable and adjustable analog-
voltage memories that could be implemented inside the chip, we have to provide all
weights and biases externally. Summary of pins for N96F-BL are:

Number of pins | Used for
3 positive supply, Vpp
3 negative supply, Vss
1 signal ground, GND
2 inputs: IN}, IN,
7x2=14 input weights of hidden neuron : w;, j=1..7, i=1,2
7 hidden neuron biases: b; j=1..7
1 adjustment of hidden neuron transfer function, hidd TF
7 output neuron weights: W, i=1..7
1 adjustment of output neuron transfer function, out TF
1 output

TOTAL 40

Neural network chip evaluation are performed using a Karl Suss Analytical Prober PM5
and Mitutoyo Microscope Unit FS60. For that purpose, the NNC board containing the
microchip socket, static electricity protection and interfacing ports, was constructed.
Observed problems, that make chip unusable, are listed below:

e Chip performance is not optimized for the designed voltage supplies +2.75, —2.25.
Figures 14 and 15 show an attempt to obtain a wider range of linearity of multipliers by
changing the voltage supply. It is not possible to compensate offset and have good
linearity. -
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Figure 14 hi,=f(X,.,) for supply +5, - 2.8 Figure 15 hi;=f(X,.y) for supply +5.08,
chosen to reduce multiplier non-linearity. 1.19 that reduce multiplier offset.

e Hidden neuron #6 does not function at all.

e Hidden neuron biases b;, i=1..7 are influencing voltage on all hidden neuron inputs.
This-causes a change in the slope and the offset of the multiplier transfer
characteristics.

e Performance of the output neuron and muitipliers representing its weights can not be
evaluated due to lack of a measurement point. This point should provide access to the
input of the output neuron and though it is present on the layout it does not exist on the

chip. ’

This 1s the third attempt to fabricate a NN VLSI chip. In our opinion, special care must be
dedicated to the proper VLSI layout and to the process of fabrication at the MOSIS foundry.
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V.  OPEN PROBLEMS

Three attempts for costume chip integration of the NN have been made. The new version has been
recently tested and measurements showed that further improvements are necessary to make the chip

operational.
VL.  CONCLUSION

The base-band binary data transmission system and BER estiination system based on neural network
have been built. Few realizations of the neural network have been tested. While the discrete model and
simulated version are working properly, some design/manufacture problems have occurred with the
VLSI chip. If another version of the chip is going to be integrated, it would probably be modular (more
than one chip) in order to have access to all relevant points for performance evaluation. Tests
performed on a discrete NN system showed a lower accuracy than the simulations. The reason for this
is the lower precision and stability of statistical moments calculated by analog circuitry. However, an
analog system for BER measurement has been made operational, while its integration remains for

future.
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